Ответы об IT

Ответы об IT

» » Как запустить 3 фазный двигатель от 220. Как подобрать конденсатор для трехфазного двигателя в однофазной сети. Подключение электромотора с пусковым сопротивлением

Как запустить 3 фазный двигатель от 220. Как подобрать конденсатор для трехфазного двигателя в однофазной сети. Подключение электромотора с пусковым сопротивлением

В личном хозяйстве часто требуется подключить какой-либо станок или приспособление для облегчения деятельности. Это может быть и корморезка, и самодельная дробилка, и циркулярка, и бетономешалка, и многое другое. На всех устройствах обычно используют асинхронные 3 фазные двигатели . Они самые распространённые. Остаётся лишь выбрать метод включения этого мотора в однофазную сеть 220 В.

Стандартное подключение

Все трехфазные асинхронные двигатели подсоединяют в сеть на 380 В. При этом они выдают максимальную мощность и наибольшие обороты. Но не у каждого хозяина есть возможность провести к себе на участок все три фазы. Это связано с финансовыми затратами по установке специальных счётчиков и различных щитов учёта электроэнергии. К тому же само оформление документов занимает довольно много времени.

По стандартной схеме, чтобы подключить трехфазный двигатель к 380 В, производят соединение трёх фаз со штатными клеммами мотора через пускатели, с помощью которых осуществляется запуск. В распределительной коробке двигателя обычно свободны три контакта, к которым и цепляют три фазы. Совершенно нет никакой разницы, какую фазу подсоединить к конкретному проводу. Правда, есть один нюанс – при смене проводов подключения, не трогая третий провод, получают вращение электродвигателя в другую сторону, что иногда необходимо в хозяйственной деятельности.

Соединение обмоток

Схемы соединения обмоток в двигателе только две – «звезда» или «треугольник». И оттого, как они соединены, зависят рабочие характеристики мотора. При любом соединении мощность не теряется. Зато при чрезмерной нагрузке двигатели со «звездой» медленнее скидывают свои обороты, чем их собратья с «треугольником». Отсюда делают вывод, что моторы со «звездой» требуют меньше пускового тока и, следовательно, менее нагружают электросеть при запуске.

Двигатели с соединением обмоток по «треугольнику» выдают свою мощность до конца даже при большой нагрузке, совершенно не теряя оборотов. Зато потом резко останавливаются, и для их следующего запуска требуется огромный пусковой ток, что чрезмерно перегружает электрическую сеть.

В промышленности используют обе схемы соединения. Двигатели со «звездой» применяют там, где требуется их систематическое включение и выключение, например, на каких-либо линиях производства, переработки, сборки и так далее. Моторы, у которых обмотки соединены по «треугольнику», нужны для работы на постоянных режимах нагрузки, например, выгрузной конвейер из шахты и другое.

В личных подсобных хозяйствах чаще всего используют двигатели, у которых соединение обмоток сделано по принципу «звезда» . По такой схеме двигатели легко запускаются, а это не нагружает электрическую сеть частного дома.

Электрический двигатель в домашней сети

Обычное штатное напряжение домашней розетки 220 В. Оно считается однофазным, и на него рассчитаны все электрические бытовые приборы , начиная от телевизора и заканчивая последней моделью кофемолки.

А вот при необходимости включения трехфазного двигателя в однофазную сеть возникает несколько проблем. А именно:

  • без дополнительных устройств запуск невозможен;
  • при работе двигателя пропадает 30 – 40 % мощности. Это вынужденная потеря, так как в работе задействованы только две обмотки статора вместо трёх.

Всё-таки асинхронные трехфазные двигатели мощностью до 2,2 кВт с успехом подсоединяют к обычной домашней розетке. Для этого есть три проверенных способа.

  1. Конденсаторное включение электродвигателя.
  2. Резисторное включение.
  3. Включение через частотный преобразователь.

Все три метода подключения имеют свои плюсы и минусы, поэтому выбирают наиболее удобный применительно к конкретным условиям. А также всё зависит от финансовых возможностей хозяина.

Конденсаторное включение

Это наиболее распространённый способ. И заключается в введении некоторого количества ёмкостей, чтобы произошёл сдвиг фазы третьей незадействованной обмотки статора. Это намного облегчает запуск мотора. О том, как подключить 3х фазный двигатель на 220 вольт, подробно видно на схеме. Здесь сразу представлены два вида соединений обмоток статора.

  • С1- С4, С2-С5, С3-С6 – обозначения обмоток статора;
  • Ср – рабочий конденсатор;
  • Сп – пусковой конденсатор;
  • КН -- кнопка для запуска.

Конечно, если двигатель без применения конденсаторов хорошенько раскрутить вручную до 1 тыс. об/мин., а потом включить в сеть на 220 В, то, скорее всего, он будет работать. Но этим никто и никогда не занимался. Обычно искали или покупали ёмкости для запуска .

Ёмкость рабочего конденсатора рассчитывают по формуле С=67×Р, где Р – мощность двигателя в кВт, а С – ёмкость конденсатора в мкФ. На практике пользуются ещё более простой формулой – 7 мкФ на каждые 100 Вт мощности. Например, для мотора 2,2 кВт нужен конденсатор ёмкостью 154 мкФ. Конденсаторы таких больших ёмкостей встречаются довольно редко, поэтому их набирают несколько и соединяют параллельно. При этом необходимо учитывать напряжение, на которое они рассчитаны. Оно должно быть больше 220 вольт примерно в полтора раза.

Обычно используют конденсаторы таких типов, как БГТ, КБП, МБГЧ, МБГО и им подобные. Это наиболее безопасные бумажные ёмкости , способные выдерживать значительную перегрузку при запуске двигателя. К тому же они слабо подвержены нагреву. Но при отсутствии их применяют и электролитические конденсаторы. В таком случае корпуса этих ёмкостей соединяют и хорошенько изолируют, так как они после высыхания электролита способны взрываться при нагрузке. Правда, довольно редко.

При запуске двигателя мощностью до 2,2 кВт используют только рабочий конденсатор. Его вполне хватает, чтобы разогнать мотор до штатных оборотов. При большей же мощности необходимо применять и пусковой конденсатор. Его ёмкость больше рабочего в 2,5 – 3 раза, то есть, для мотора в 2,2 кВт это будет 300 – 450 мкФ. В качестве пусковых ёмкостей часто применяют именно электролитические, так как в этом случае они работают кратковременно и нужны только для запуска. После набора мотором своих полных оборотов пусковые конденсаторы отключают кнопкой КН, что показано на схеме.

Чтобы изменить направление вращения электродвигателя, необходимо сделать переключения. Для этого нужно обратиться к схеме, где обмотки соединены «звездой»:

  • вместо С1-С2 подключить в однофазную сеть С1-С3;
  • рабочий конденсатор Ср включить между С2 и С3;
  • кнопку с пусковым конденсатором тоже переключить на С2-С3.

В схеме соединения «треугольником» проводят аналогичные действия.

Существует специальная электрическая схема переключения вращения двигателя, которая на практике используется довольно редко. Обычно настраивают вращение в какую-нибудь одну сторону. Мотор нужен для привода конкретного устройства или агрегата, и чтобы поменять вращение рабочего органа, используют обыкновенный редуктор. Это можно увидеть на примере токарного или другого станка. В личном подсобном хозяйстве, например, для изменения хода ленты, где калибруют картофель, также употребляют редуктор. Это намного упрощает определённую задачу и обеспечивает хорошую технику безопасности.

Резисторное включение электродвигателя

При отсутствии конденсаторов для включения трехфазного мотора в однофазную сеть иногда используют резисторы . Это мощные керамические или стеклованные сопротивления. Вполне сгодится вольфрамовая проволока толщиной до 1 мм. При подключении её скручивают в пружину и укладывают в керамическую трубку.

Размер сопротивления вычисляется по формуле R = (0,87× U)/ I , где U – напряжение однофазной сети 220 В, а I – величина тока в амперах А.

Схема подключения с резисторами используется только для двигателей мощностью до 1 кВт, так как в сопротивлении происходит большая потеря энергии.

Через преобразователь частоты

Запуск 3-фазного мотора от сети на 220 В с помощью этого устройства сейчас является самым перспективным . Оттого оно употребляется в новейших проектах по управлению электроприводами. Дело в том, что при изменении напряжения и частоты сети меняется количество оборотов мотора, а в результате - и направление вращения.

Преобразователь представляет собой две электронные части , которые находятся в одном корпусе. Это управляющий модуль и силовой. Первый отвечает непосредственно за пуск и регулировки, а второй питает мотор электроэнергией.

Использование преобразователя для пуска трехфазного двигателя от домашней сети позволяет резко уменьшить пусковой ток и, следовательно, нагрузку. Практически пуск мотора можно производить постепенно, наращивая его обороты от 0 до 1000 – 1500 об/мин.

Пока такой прибор имеет очень высокую стоимость, что ограничивает его применение в домашнем хозяйстве. Кроме того, из-за плохих показателей качества самой электросети устройство постоянно находится в стадии усовершенствования. Это заставляет многих хозяев пользоваться старыми проверенными способами подключения трехфазных двигателей в однофазную сеть.

Применение однофазных двигателей в быту

Кроме трехфазных моторов широкое распространение получили и однофазные асинхронные двигатели. Они повсюду применяются в мощных насосах, в стиральных машинах, в тепловых и вентиляционных системах, а также пользуются популярностью у частных предпринимателей, которые решили открыть собственную пилораму.

Такие двигатели включают в обычную сеть на 220 В. Внутри этих моторов находятся две обмотки – одна из них пусковая, а другая рабочая. При создании сдвига фаз между ними получается вращающееся магнитное поле – это основное условие для запуска этих двигателей. Сдвигают фазы, как и в случае с трехфазными моторами, путём добавления ёмкостей. Схема подключения однофазного двигателя очень похожа на схему с трехфазным мотором.

Расчёт конденсаторов производят по такой же формуле или учитывают, что на каждый киловатт мощности мотора нужно 75 мкФ ёмкости. Это для рабочего конденсатора, а для пускового - в три раза больше. Кроме того, конденсаторы должны выдерживать напряжение не менее 300 В. При малой мощности двигателя вполне обходятся одной рабочей ёмкостью.

Промышленность выпускает электродвигатели, предназначенные для работы в различных условиях, в том числе для сети 220 вольт. Однако у многих людей сохранились трёхфазные асинхронные электродвигатели 380В (люди старшего поколения помнят такое явление, как «принёс домой с работы»). Такие аппараты нельзя включать в розетку. Для использования таких приборов в домашних условиях и подключении вместо 380 220 вольт схема сборки и подключения электромашины нуждаются в доработке – переключении обмоток и подключении конденсаторов.

Принцип действия трёхфазного асинхронного электродвигателя

Обмотки в статоре такой машины намотаны со сдвигом в 120°. При подаче на них трёхфазного напряжения появляется вращающееся магнитное поле, приводящее в движение ротор электромашины.

При подключении к трёхфазной электромашине к сети однофазного напряжения 220 вольт вместо вращающегося поля появляется пульсирующее. Для приведения в движение электромотора в однофазной сети пульсирующее поле преобразовывается во вращающееся.

Справка. В аппаратах, изготовленных для работы в сети 220 вольт, для этого служат пусковые обмотки или особенности конструкции статора.

При включении в сеть двигателя 380 на 220 к нему подключаются фазосдвигающие ёмкости. Запуск трехфазного двигателя с 220 без конденсаторов возможен приведением во вращение ротора. Это создаст сдвиг магнитного поля, и электромашина, потеряв в мощности, продолжит работать. Так включают циркулярки и другие подобные механизмы с низким пусковым моментом.

Начала и концы обмоток

В каждой обмотке электромашины есть начало и конец. Они выбираются условно, независимо от направления намотки, однако должны соответствовать направлению намотки остальных катушек.

Важно! В электросхемах начало катушек отмечается точкой.

Соединение катушек при подключении трехфазного двигателя к сети 220В

Большинство электродвигателей предназначены для работы с линейным напряжением 0,4кВ. В этих машинах обмотки включены “звездой”. Это значит, что концы обмоток соединены вместе, а к началам подключается 3 фазы. Напряжение на каждой обмотке составляет 220В.

При включении в сеть с линейным напряжением 220В применяется соединение “треугольник”. При этом начало следующей обмотки подключается к концу предыдущей.

Некоторые аппараты мощностью более 30 кВт изготавливаются для сети с линейным напряжением 660В. В таких аппаратах при включении в сеть 0,4кВ обмотки подключаются “треугольником”.

Как подключить трехфазный электродвигатель в сеть 220в

Обмотки трёхфазной машины при включении от 220 вольт соединяются различными способами. Синхронная скорость и скорость вращения от этого не меняются.

Соединение звездой

При включении трехфазного электродвигателя на 220 вольт проще всего применить имеющееся соединение “звезда”. К двум выводам подаётся питание 220В, а к третьему оно подаётся через фазосдвигающую ёмкость. Однако при этом на каждой из катушек оказывается не 220В, а 110, что приведёт к падению мощности до 30%. Поэтому такое подключение на практике не применяется.

Соединение треугольником

Самая распространенная схема подключения трехфазного электродвигателя к сети 220 – треугольник. При этом питание подаётся на одну сторону треугольника, а параллельно другой стороне подключаются конденсаторы. Реверс осуществляется изменением стороны треугольника, на которой находится ёмкость.

Изменение схемы подключения обмоток трёхфазного электродвигателя на треугольник

Самое сложное при подключении трёхфазной электромашины к бытовой сети 220 вольт – соединить её обмотки треугольником.

Изменение соединений на клеммнике

При подключении к сети 220 вольт проще всего эта операция выполняется, если провода подключены к клеммнику. На нём в два ряда установлены шесть болтов.

Соединение производится попарно, кусочками проволоки или перемычками, идущими в комплекте с двигателем.

Сборка треугольника, согласно маркировке выводов

Если клеммник отсутствует, а на выводах есть маркировка, то задача также простая. Обмотки маркируются С1-С4, С2-С5, С3-С6, где С1, С2, С3 – начала обмоток, и концы соединяются С1-С6, С2-С4, С3-С5.

Интересно. В старых электродвигателях импортного производства вывода маркируются A-X, B-Y, C-Z, а современные обозначения: U1-U2, V1-V2, W1-W2.

Что делать, если есть только три вывода

Сложнее всего собрать схему подключения со «звезды» на «треугольник» в электромашинах, соединение обмоток которых находится внутри корпуса. Эта операция выполняется при полной разборке электромашины. Для переключения обмоток на треугольник необходимо:

  1. разобрать электродвигатель;
  2. найти внутри место соединения обмоток и рассоединить его;
  3. к концам обмоток припаять отрезки гибких проводов и вывести их наружу;
  4. собрать аппарат;
  5. попарно вызвонить вывода катушек;
  6. соединить старый вывод одной катушки с новым проводом следующей;
  7. операцию повторить ещё два раза.

Соединение при отсутствии маркировки

Если маркировки нет, а из корпуса выходит шесть концов, то необходимо определить начало и конец каждой обмотки:

  1. Тестером попарно определить вывода, относящиеся к каждой обмотке. Пометить пары;
  2. В одной из пар выбрать провод. Отметить его как начало обмотки, оставшийся отмечается как конец;
  3. Соединить отмеченную обмотку последовательно с другой парой проводов;
  4. Подключить к соединённым катушкам напряжение ~12-36В;
  5. Замерить вольтметром напряжение на оставшейся паре. Вместо вольтметра можно использовать контрольную лампочку;
  6. Статор с обмотками представляет собой трансформатор и при согласованном соединении вольтметр покажет наличие напряжения. В этом случае во второй паре проводов отмечаются начало и конец катушки. При отсутствии напряжения изменить полярность подключения одной из пар выводов и повторить п.п. 4-5;
  7. Соединить одну из отмеченных пар с оставшейся неразмеченной и повторить п.п. 3-6.

После определения начала и концов во всех обмотках, они соединяются треугольником.

Подключение фазосдвигающих конденсаторов

Для нормальной работы электромашине необходимы пусковые и рабочие ёмкости.

Выбор номинала рабочего конденсатора

Есть разные формулы для определения необходимой ёмкости рабочего конденсатора, учитывающие номинальный ток, cosφ и другие параметры, но чаще всего просто берётся 7мкФ на 100Вт или 70мкФ на 1кВт мощности.

После сборки схемы целесообразно включить последовательно с машиной амперметр и, увеличивая и уменьшая рабочую ёмкость, добиться минимальной величины показаний прибора.

Важно! Рабочие конденсаторы применяются для переменного напряжения не меньше 300В.

Выбор и подключение пусковых конденсаторов

Пуск с использованием только рабочих фазосдвигающих конденсаторов длительный, а при значительном моменте на валу машины невозможен. Для облегчения пуска и уменьшения его длительности на период разгона электромашины параллельно рабочим подключаются пусковые ёмкости. Они выбираются в 2-3 раза больше, чем рабочие. Номинальное напряжение также более 300В. Пуск происходит несколько секунд, поэтому допускается подсоединение электролитических конденсаторов.

Как подключить трехфазный двигатель на 220 вольт с использованием пусковых конденсаторов

Схема запуска должна предусматривать отключение пусковых ёмкостей после пуска электромашины. Если этого не сделать, то машина начнёт перегреваться. Для этого есть разные способы:

  • Отключение пусковых ёмкостей с помощью реле времени. Задержка отключения составляет несколько секунд и подбирается опытным путём;
  • Применение универсального переключателя (ключа УП) на 3 положения. Его диаграмма включения собирается таким образом, чтобы в первом положении все контакты были разомкнуты, во втором замыкались два: питание и пусковые конденсаторы, а в третьем – только питание. Для реверсивной работы используется ключ на 5 положений;
  • Специальная кнопочная станция – ПНВС (пускатель нажимной с пусковым контактом). В этих конструкциях есть 3 контакта. При нажатии “Пуск” замыкаются все, но крайние фиксируются, а средний нужен, чтобы запустить машину, и отпадает после отпускания кнопки. Нажатие на кнопку “Стоп” отключает зафиксированные контакты.

Как переделать схему вращения в реверсивную

Для реверса электродвигателя необходимо изменить направление вращения магнитного поля. При запуске мотора без конденсаторов ему предварительно придаётся вручную необходимое направление вращения, а в конденсаторной схеме производится переключение ёмкости с нулевого провода на фазный. Это производится тумблером, переключателем или пускателями.

Важно! Пусковые конденсаторы подсоединяются параллельно рабочим и переключаются при изменении направления вращения одновременно с ними.

Электронные преобразователи бытового напряжения в промышленное трёхфазное 380В

Эти трёхфазные инверторы применяются для использования в бытовой сети трехфазных двигателей. Электродвигатели подключаются напрямую к выходу аппарата.

Необходимая мощность преобразователя выбирается, в зависимости от тока электрической машины. Есть три режима работы таких приборов:

  • Пусковой. Допускает кратковременное (до 5 секунд) двукратное превышение мощности. Этого достаточно для запуска электродвигателя;
  • Рабочий, или номинальный;
  • Перегрузочный. Допускает в течение получаса превышение тока в 1,3 раза.

Преимущества инвертора 220 в 380:

  • подключение не переделанных трёхфазных электромашин на 220 вольт;
  • получение полной мощности и момента электромашины без потерь;
  • экономия электроэнергии;
  • плавный запуск и регулировка оборотов.

Несмотря на появление электронных преобразователей, конденсаторные схемы включения трёхфазных электродвигателей продолжают применяться в быту и небольших мастерских.

Видео

В статье собраны советы, как можно подключить такой электродвигатель в однофазную сеть без использования конденсаторной батареи или частотного преобразователя за счет импульса тока от электронного ключа. Они дополняются схемами и видеороликом.


Принцип работы электронного ключа

Если собрать обмотки асинхронного электродвигателя по схеме треугольника и подключить к напряжению однофазной сети 220 вольт, то через них станут протекать одинаковые токи, как показано на графике ниже.

Угловое смещение любой обмотки относительно других составляет 120 градусов. Поэтому магнитные поля от каждой из них будут складываться, устранять взаимное влияние.

Создаваемое результирующее магнитное поле статора не будет оказывать влияние на ротор: он останется в состоянии покоя.

Чтобы электродвигатель начал вращение необходимо через его обмотки пропустить сдвинутые на 120° токи, как это делается в нормальной трехфазной системе питания или за счет . Тогда двигатель станет вырабатывать мощность с минимальными потерями, обладая наибольшим КПД.

Широко распространённые промышленные позволяет ему работать, но с меньшим КПД и большими потерями, что, чаще всего, вполне допустимо.

Альтернативными методами являются:

  1. Механическая раскрутка ротора, например, за счет ручной намотки шнура на вал и резкого его прокручивания рывком при поданном напряжении;
  2. Сдвиг фаз токов за счет кратковременного использования электронного ключа, коммутирующего электрическое сопротивление одной обмотки.

Поскольку первый способ «намотал и дернул» не вызывает трудностей, то сразу анализируем второй.

На верхней схеме показан подключенный параллельно обмотке B электронный ключ «k». Это довольно условное обозначение принято для объяснения принципа работы электродвигателя за счет формирования токового импульса.

Как запускается двигатель

Обмотки статора подключены по схеме треугольника. На одну из них (A) подается напряжение 220 вольт. Параллельно ей подключена еще одна цепочка из двух последовательных обмоток (B+C).

По закону Ома напряжение сети создает в них токи. Их величина зависит от сопротивления. Все обмотки одинаковы. Поэтому в (A) ток больше, а (B+C) в 2 раза меньше по величине. Причем по фазе они совпадают. При такой ситуации они не способны создать вращающееся магнитное поле, достаточное для запуска ротора.

Параллельно обмотке (B) подключена электронная схема, обозначенная как ключ K. Он находится в разомкнутом состоянии, но кратковременно замыкается в момент достижения максимального напряжения на обмотке С.

Электронный ключ закорачивает обмотку В и падение напряжения на обмотке С скачком возрастает в два раза, что в итоге и обеспечивает сдвиг фаз токов в обмотках А и С. Важно отметить, что ток в обмотках (А) и (В+С) в этот момент равен нулю.

Угол сдвига фаз φ, необходимый для запуска двигателя, достаточно выдержать в интервале 50÷70°, хотя идеальный вариант - 120.

Конструкция фазосдвигающего электронного ключа может собираться из разных деталей. Наиболее подходящие устройства для бытовых целей по мере их сложности представлены ниже.

Схема запуска электродвигателя до 2 кВт

Ее описание можно найти в №6 журнала Радио за 1996 год. Автор статьи В Голик предлагает конструкцию двунаправленного (положительной и отрицательной полугармоник) электронного ключа на двух диодах и тиристорах с управлением транзисторным блоком.

Описание технологии

Силовые диоды VD1 и VD2 совместно с тиристорами VS1, VS2 образуют мост, который управляется прямым и обратным биполярными транзисторами. Положение подстроечного резистора R7 влияет на напряжение открытия VT1, VT2.

Срабатывание транзисторного ключа обеспечивает кратковременный сдвиг фаз токов в обмотках и создание вращающегося магнитногого поля, раскручивающего ротор.

Благодаря приложенному моменту магнитных сил к ротору, последний начинает вращение. Его энергия постоянно пополняется на каждой полуволне очередным импульсом.

Особенности монтажа

Автор выполнил электронный ключ на стеклопластиковой плате и поместил его в изолированный корпус с возможностью подключения входных и выходных цепей через контактные выводы. Вариант исполнения схемы навесным монтажом тоже имеет право на реализацию.

Для работы электродвигателей небольших мощностей допустимо силовые диоды и тиристоры размещать без радиаторов. Но обеспечить хороший теплоотвод с них и надежную работу лучше заранее, включив эти элементы в конструкцию электронного ключа.

Номиналы электронных компонентов указаны прямо на схеме.

С целью обеспечения безопасности следует хорошо выполнить изоляцию корпуса электронного блока, исключить случайное прикосновение к его деталям во время работы: они все находятся под напряжением 220 вольт.

Принципы наладки

Ползунок резистора R7 «Режим» имеет два крайних положения:

  1. минимального;
  2. и максимального сопротивления.

В первом случае электронный ключ открыт и создает максимальный импульс сдвига тока в обмотке, а во втором - закрыт: вращение ротора исключено.

Запуск трехфазного двигателя осуществляют на максимально допустимом сдвиге фазы тока внутри обмотки. Затем положением R7 выставляют его рабочие обороты и мощность.

Проверенные модели

  1. числом оборотов 1360 и мощностью 370 ватт (АААМ63В4СУ1);
  2. 1380 об/мин, 2 кВт.

Результаты экспериментов его устроили.

Две схемы на симисторах

Следующие 2 конструкции электронного ключа описал В Бурлако в 1999 году. Они опубликованы в журнале Сигнал №4.

Запуск легкого электродвигателя

Устройство разработано для двигателей с мощностью до 2,2 кВт, имеет минимальный набор электронных деталей.

Конденсатор С, обладая емкостным сопротивлением, под действием приложенного к его пластинам напряжения, сдвигает вектор тока вперед на 90 градусов, направляя его на управление динистором VS2.

Разность потенциалов на конденсаторе регулируется суммарным сопротивлением R1, R2. Импульс динистора поступает на управляющий электрод симистора VS1, который вбрасывает ток в обмотку электродвигателя.

Схема пуска двигателя под нагрузкой

Для станков и механизмов, создающих большое противодействие раскрутке ротора, можно порекомендовать переключить обмотки на схему разомкнутой звезды с созданием двух раскручивающих моментов.

Полярность обмоток двигателя указана точками на схеме. Фазосдвигающие цепочки импульсов тока работают по той же технологи, что и в предыдущих случаях. Номиналы электрических деталей проставлены рядом с их графическими обозначениями.

Особенности наладки

Все три контакта этого пускателя при нажатии на кнопку «Пуск» замыкаются одновременно, а при отпускании:

  • два крайних остаются в замкнутом состоянии;
  • средний - разрывается, отключая цепь пусковой обмотки.

Через этот средний контакт в обеих схемах подается импульс тока. Схема работает только на время, необходимое для раскрутки двигателя, после чего выводится из работы, отключается от питающего напряжения.

Момент запуска двигателя в каждой схеме подбирают после подачи напряжения изменением сопротивления R2. При этом в треугольнике до момента раскрутки ротора проходят большие токи, вызывающие сильные вибрации конструкции. Для их уменьшения рекомендуется подбирать фазосдвигающий импульс ступенями, а не плавно.

При оптимальном положении R2 двигатель запускается без вибраций.

Для двигателей небольшой мощности можно осуществлять монтаж симисторов без радиаторов охлаждения, но последние все же повышают надежность схемы.

Мое мнение о методе

В трех рассмотренных схемах ток рабочего режима протекает по всем подключенным обмоткам. Полное расходование приложенной энергии тратится не рентабельно. Только около 30% ее мощности создает вращение ротора. Остальная часть порядка 70% - безвозвратные потери.

Если кого-то устраивает запуск трехфазного двигателя в однофазной сети по этой схеме, то это ваш выбор. Я же сделал обзор этих схем, чтобы показать их положительные и отрицательные стороны, не навязывая собственное мнение.

Этой темой стали массово пользоваться создатели видеороликов на Ютубе, набирая количество просмотров и подписчиков, как ЮКА ЛАХТ, в своем видео «Без конденсаторный запуск трехфазного двигателя».

Делайте выбор осознанно, а если остались вопросы по теме, то сейчас вам удобно задать их в комментариях.

Трёхфазный двигатель незаменим для использования мощных устройств, работающих от сети 220. Устройство на три фазы в разы превосходит однофазный механизм. Правильная схема подключения трехфазного электродвигателя на 220, а также пусковые приборы, обмотки, необходимы для обеспечения высокой эффективности эксплуатации.

Метод включения электродвигателя на 220 вольт зависит от вида электропусковой системы. Типы соединений бывают следующие:

Использование магнитных пускателей

Довольно популярная модель присоединения электромоторов.

L1 –первый провод, L2 – вторая провод, L3 – третья провод, КМ – магнитный пускатель

Рассмотрим схему включения электродвигателя через магнитный контактор 220 подробней.

Три провода под напряжением проходят через пускатель. Для управления включением в сеть есть кнопка Пуск. А для выключения используется кнопка Стоп. Кнопки можно вынести на пульт через провода.

Питание 220 цепи проходит с первого провода, то есть сL1 на нормально замкнутую фазу Стоп.

Бывают ситуации, когда пускатель не действует из-за подгорания контактов. Если включить Пуск, то произойдёт замыкание цепи питания катушки. Контакты пускателя замыкают, а на двигатель поступают три фазы. Подобные чертежи могут иметь ещё один добавочный контакт. Он называется блокировочный или контакт-самоподхвата.

Активируя пускатель кнопкой включения блокировочный контакт замыкается. А если он замкнут, то цепь питания катушки пускателя будет замкнутой, даже отжав кнопку пуска. Эксплуатация прибора будет происходить до выключения кнопки Стоп.

Пуск через двухполюсник

Под данным термином имеется в виду объем конденсатора, который зависит от вида подключения обмоток двигателя. При соединении треугольником ёмкость равняется 70 умножить на номинальную мощность мотора.

Соединение звездой

Сп пусковой конденсатор, Ср рабочий конденсатор, 1, 2, 3 начало обмоток, 4, 5, 6 концы обмоток

Выбор неправильного объёма в большую сторону приведет к тому, что мотор будет нагреваться. А недостаточная ёмкость снизит мощность. Поэтому подбирать ёмкость рекомендуется при включенном в сеть 220 конденсаторе, воспользовавшись щипцами. Прибор должен быть в обычном режиме.

Для определения пусковой ёмкости необходимо создать момент запуска. Объём впуска определяется суммой рабочего и пускового конденсатора.

При запуске без нагрузки, ёмкости пусковые одинаковы с рабочими. В таком случае в электропусковом конденсаторе необходимости нет. Схема становится проще и дешевле.

При нагрузке на впуске необходима дополнительная ёмкость. Большее отключение ёмкости увеличит момент запуска. Дальнейшее увеличение уменьшает момент. Следовательно, электропусковая ёмкость превосходит рабочую в 2-3 раза. Общая продолжительность действия конденсатора несколько секунд.

Наши читатели рекомендуют! Для экономии на платежах за электроэнергию наши читатели советуют ‘Экономитель энергии Electricity Saving Box’. Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

УЗО является защитным устройством, которое отключает двигатель от сети 220.

УЗО имеет три фазы и четыре полюса. Во время соединения могут использоваться все полюсы, а могут подсоединяться три полюса, как показано на картинке выше.

Схема может быть двух вариантов.

Треугольник

Данная схема позволяет контролировать утечки тока на корпус. При подключении треугольником идут в ход фазные провода, а нейтральная клемма не подсоединены к обмоткам. При нормальной работе двигателя, УЗО не работает, так как оно измеряет векторную разность токов.

На схеме изображено подсоединение мотора способом звезда. Особенность подключения через УЗО- это количество проводов, которые входят и отходят. УЗО работает на 4 полюса, а нейтральная клемма присоединяется к отдельной клемме, расположенной со стороны рычага.

Ток пусковой нагрузки двигателя превышает его рабочую нагрузку в 4-5 раз, пока ротор не начинает вращаться. Тогда ток уменьшается. Для того чтобы избежать замыкания и обеспечить способность мотора запускаться, необходимо использовать УЗО.

Подключение звездой

Данный вид включения (2а) обеспечивает плавный пуск.

Начала обмоток статора соединить в одной точке, а концы обмоток соединяются с тремя фазами электропитания.

Пуск треугольником

Для достижения полной мощности двигателя необходимо подключение треугольником (2б).

Обмотки статора подсоединяется между собой. Начало следующей обмотки соединяется с концом предыдущей. К местам их соединения проводятся трехфазное питание 220.

На рисунке выше изображена схема включения «звезда треугольник». Редко используется для пуска двигателя.

Сначала применяется звезда на впуске, а в рабочем режиме треугольник. Таким образом, достигается максимальная мощность, но сложным исполнением.

Для функционирования необходимо 3 пускателя. На первый подключается питание, которое соединяется с концом обмоток статора. Начало подсоединяется с другими двумя контакторами. Со второго устройства начало обмотки соединяется с другими фазами в треугольник. При запуске третьего устройства образуется звезда, закорачивая все провода.

Важно! Нельзя включать одновременно 2, 3-й пускатель, иначе может произойти аварийное отключение автоматической защиты. Необходимо сделать блокировку между ними.

Работает схема так: сначала пускатель подает сигнал на 3-йконтактор, при этом механизм начинает работать.Далее отключается третий контактор, а второй включается. Далее применяется треугольник. Отключает двигатель первый пускатель.

Трёхфазный двигатель может работать от сети 220 вольт по чертежу звезда треугольник. Но если розетка обычная бытовая, то необходим частотный преобразователь.

Внимание! Используя любой способ подключения, будьте предельно внимательны, так как неправильные соединения могут привести к сгоранию устройства.

Корректно подобранная схема соединения трехфазного электродвигателя на 220 обеспечит плавность пуска, стабильность и работы.

Подключение электродвигателя 380В на 220В выполняется через конденсатор. Для такого подключениянеобходимо использовать бумажные (или пусковые) конденсаторы , при этом ВАЖНО чтобы номинальное напряжение конденсатора было больше либо равно напряжению сети (при этом рекомендуется что бы напряжение конденсатора было в 2 раза больше напряжения сети). Могут применяться конденсаторы следующих марок (типов):

МБГО, МБГЧ, МБГП, МБГТ, МБГВ, КБГ, БГТ, ОМБГ, K42-4, К42-19 и др.

Емкость конденсатора можно определить по формулам приведенным ниже, либо с помощью .

Первое, что необходимо сделать — это правильно соединить выводы обмоток электродвигателя. Как уже известно из статьи: обмотки электродвигателя можно соединить по (обозначается - Y) или по (обозначается - Δ), при этом, как правило для подключения электродвигателя на 220В применяется схема «треугольник» , что бы определиться со схемой соединения обмоток необходимо посмотреть на прикрепленном к нему шильдике:

Запись: «Δ/ Y 220/380V» обозначает, что для подключения данного электродвигателя на 220В необходимо соединить его обмотки по схеме , а для подключения на 380В — по схеме, как это сделать .

Второе, с чем необходимо определиться — это как будет производиться запуск электродвигателя, под нагрузкой (когда уже в момент запуска электродвигателя к его валу приложена нагрузка и он не может свободно вращаться) либо без нагрузки (когда вал электродвигателя в момент запуска свободно вращается, например наждак, вентилятор, циркулярная пила и т.п.).

При запуске двигателя без нагрузки применяется 1 конденсатор который называется рабочим, а при необходимости запуска двигателя под нагрузкой в схеме, помимо рабочего, дополнительно применяется 2-ой конденсатор который называется пусковым, он включается только в момент запуска.

Разберем схемы подключения электродвигателя 380 на 220 для обоих случаев:

  1. Схемы подключения электродвигателя через конденсатор.

1) Подключение электродвигателя через конденсатор по схеме «треугольник», запуск — без нагрузки:

Емкость рабочего конденсатора для подключения электродвигателя при схеме соединения обмоток «звездой» рассчитывается по формуле:

C р =2800 * I н / U с ; мкф

где: I н -номинальный ток электродвигателя в Амперах (принимается в соответствии с паспортными данными электродвигателя); U с — напряжение сети в Вольтах.

В случае если запуск двигателя 380 на 220 Вольт происходит под нагрузкой, в схеме дополнительно должен применяться пусковой конденсатор иначе силы момента на валу электродвигателя не хватит для его раскрутки и двигатель не сможет запуститься.

Пусковой конденсатор подключается параллельно рабочему и должен включаться только в момент запуска двигателя, после того как двигатель наберет обороты его необходимо отключать.

Емкость пускового конденсатора должна быть в 2,5 — 3 раза больше рабочего.

C п = (2,5…3) * C р ; мкф

При данной схеме для запуска электродвигателя необходимо нажать и держать кнопку SB, после чего подать напряжение включив автоматический выключатель, как только двигатель запустится кнопку SB необходимо отпустить. В качестве кнопки так же можно использовать обычный выключатель.

Однако лучшим вариантом для подключения электродвигателя 380 на 220 является использование ПНВС-10 (пускатель нажимной с пусковым контактом):

Кнопки «пуск» в этих пускателя имеют 2 контакта один из них при отпускании кнопки «пуск» размыкается отключая пусковой конденсатор, а второй остается замкнутым и через него подается напряжение на электродвигатель через рабочий конденсатор, отключение производится кнопкой «стоп».

  1. Реверс электродвигателя подключенного на 220 Вольт через конденсатор.

Итак, из схем приведенных выше следует, что при любом способе соединения обмоток (звезда или треугольник) в клеммной коробке двигателя остается три точки для его подключения к сети, условно: на первый вывод подключается ноль, на второй — фаза, а на третий подается фаза через конденсатор, но что делать если двигатель при запуске начал вращаться не в ту сторону в которую необходимо? Что бы изменить направление вращения двигателя подключенного через конденсатор необходимо просто переключить фазный провод с одного вывода электродвигателя на другой, а нулевой провод при этом оставить на том же выводе, т.е. условно: ноль оставить на первом выводе, фазу подать на третий, а на второй подать фазу через конденсатор.

Т.к. переключение выводов в клеммной коробке занимает определенное время, то в случае необходимости часто менять направление вращения конденсаторного электродвигателя лучше применять схему подключения через однополюсный пакетный переключатель на 2 направления:

При такой схеме в положении пакетного выключателя «0» двигатель будет отключен, а при положениях «1» и «2» запускаться по часовой либо против часовой стрелки.

  1. Использование группы (блока) конденсаторов.

При подключении электродвигателя через конденсатор очень важно как можно точнее подобрать его емкость. Чем ближе будет значение фактической емкости конденсатора к расчетной тем более оптимальным будет сдвиг вектора напряжения относительно вектора тока, что в свою очередь даст более высокие показатели момента на валу двигателя и его КПД.

Например: согласно расчету необходимая емкость рабочего конденсатора составила 54 мкФ, при этом найти конденсатор подходящей емкости не удается, в таком случае наиболее целесообразным вариантом является использование группы параллельно соединенных конденсаторов (конденсаторного блока).

Как известно, при параллельном соединении конденсаторов их емкость суммируется, таким образом, что бы получить нужные нам 54 мкФ можно использовать 2 параллельно соединенных конденсатора — на 40 и на 14 мкФ (40+14=54), либо любое другое количество конденсаторов суммарная емкость которых будет давать нужное значение, например 30, 20 и 4 мкФ.